One hour in the Global Neuronal Workspace of an ASSC President

Lionel Naccache

Pitié-Salpêtrière Hospital, Sorbonne Université, ICM, INSERM, Paris, France lionel.naccache@gmail.com

Disclosure of Conflict of Interest

Co-scientific founder and shareholder of Neurometers (2024)

One hour in the Global Neuronal Workspace of an ASSC President

Lionel Naccache

Pitié-Salpêtrière Hospital, Sorbonne Université, ICM, INSERM, Paris, France lionel.naccache@gmail.com

0

lionel naccache dional naccachè gigmail comi

A asset 997, director -

Dear Lucie.

Dear Members of ASSC Board of Directors: dear Ghistaine, Joseph, Elisabeth, Simon, Biyu, Jacobo, Claire, Megan, and Olivia, I am sorry for my kind of emphatic response, but I'm (really) extremely glad of this election, and I will do my best to serve this role with (my conscious and my top-down driven unconscious) enthusiasm:).

Obviously, I more than agree to give the 1-hour talk in Crete (therefore in Greece, one of the original lands of consciousness studies, how lucky I am) in July 2025 (my calendar is now booked for these dates :)).

Even if I'm not a systematic participant of all ASSC annual meetings, my first ever participation to a scientific

conference... was actually ASSC #2 in Bremen (extract of the program below*), during my PhD, and since then ASSC always kept a special flavor to me.

Thank you, and I send to each of you my best wishes for 2024 (and 2025 :))

Amities,

Lionel

* "CS 4: Unconscious Perception Holiday Inn Stockholm 2

14,00 ARMIN HEINECKE: Unconscious perception: priming of multiple features?

14.30 ULLIN T. PLACE: The neuroanatomy of consciousness and the zombie-within

15.00 LIONEL NACCACHE: Imaging unconscious semantic priming: A chronometric, ERP and fMRI study"

https://theasec.org/wp-content/uploads/2021/03/ASSC-2_Program3.pdf

One hour in the Global Neuronal Workspace of an ASSC President

Lionel Naccache

Pitié-Salpêtrière Hospital, Sorbonne Université, ICM, INSERM, Paris, France lionel.naccache@gmail.com

Global Neuronal Workspace

- Synthetic résumé of GNW framework
- Questions/Ideas about conscious access
- Questions/Ideas about conscious state
 - → with a strong focus on disorders of consciousness
- Questions/Ideas about conscious stream

Global Neuronal Workspace

Synthetic résumé of GNW framework

A brief primer of GNW framework

Baars, 1989
Dehaene, Changeux, Naccache, Sackur, Sergent, TICS 2006
Dehaene, Changeux, Naccache, Springer 2011

Dehaene & Naccache, Cognition 2001 Dehaene & Changeux, Neuron 2011 Naccache, Philos. Trans. Roy. Soc. B 2018

A theory driven by cognitive psychology

- From psychology to the brain
 - → A definition:

Being conscious = being able to <u>self-report</u>

SELF-REPORT <u>IS NOT</u> A BEHAVIOR BUT <u>AN INTERNAL PROCESS</u>

"I see X, I feel Y, I remember Z, I'm doing X ..."

(not necessarily verbal)

A theory driven by cognitive psychology

- From psychology to the brain
 - → A definition:

Being conscious = being able to <u>self-report</u>

- → Conscious state & Conscious content
- → Cognitive properties of consciously accessed representations such as:
 - . Cognitive availability
 - . Explicit durable maintenance of information
 - . Cognitive flexibility and novel operations
 - . Transfer to long term episodic memory
 - . Strategic cognitive control

From psychology to the brain

Psychology

- Modularity of many unconscious cognitive processes
- Non modularity of conscious cognition

Brain function

- Neural modularity
 of many unconscious
 cognitive processes
- Neural non modularity of conscious cognition

Psychology

- Unconscious:
transient activation of
word attributes
inaccessible to report,
to strategic processing,
to episodic memory, to
novel operations and to
other cognitive domains

Brain function

- Unconscious: transient activation of VWFA region inaccessible to highlevel fronto-parietal networks

Psychology

- Unconscious:
transient activation of
word attributes
inaccessible to report,
to strategic processing,
to episodic memory, to
novel operations and to
other cognitive domains

Brain function

Dehaene, Naccache et al., Nature Neurosc. 2001

Psychology

- Conscious: durable activation of word attributes accessible to report, to strategic processing, to episodic memory, to novel operations and to other cognitive domains

Brain function

- Conscious: durable activation of VWFA region accessible to high-level fronto-parietal networks that subtends all these functions

Psychology

- Conscious: durable activation of word attributes accessible to report, to strategic processing, to episodic memory, to novel operations and to other cognitive domains

Brain function

Dehaene, Naccache et al., Nature Neurosc. 2001

Unconscious modular cognition would operate in a modular neural space

Conscious non modular cognition would operate in a non-modular neural space that is... the GNW

At any moment, a single complex representation occupies our conscious mind

"We have only one thought of the same thing at the same time" Descartes (Passions of the soul, 1649)

At any moment, a single complex representation occupies our GNW!

"We have only one thought of the same thing at the same time" Descartes (Passions of the soul, 1649)

The mechanism of conscious access: Top-down amplification and *all-or-none* ignition

Cognitive availability of representations occurs when neural availability does

Gaillard, ... & Naccache PLoS Biology, 2009 El Karoui,... & Naccache Cerebral Cortex, 2014

Gaillard, ... & Naccache PLoS Biology, 2009

Late, sustained & brain-scale activation as a signature of GNW conscious access

Global Neuronal Workspace

- Synthetic résumé of GNW framework
- Questions/Ideas about conscious access

Question: What is (are) the neural signature(s) of conscious access?

→ GNWT: Conscious access as a late event associated with neural access to GNW

→ About the difficult 'non-hard' problem of Conscious Access ...

Sergent & Naccache, Arch. Ital. Biol. 2012 Aru, Bachmann, Singer & Melloni, Neurosc. & Bhv Rev. 2012

Act I: Conscious access = late global event

Dehaene, Naccache, Cohen et al., Nature Neuroscience 2001 Sergent, Baillet, Dehaene Nature Neuroscience 2005

Act II: Conscious access ... or postperceptual processing?

→ Relevance of 'No-Report' paradigms

'NO-REPORT' = NO BEHAVIORAL REPORT BUT

'NO-REPORT' ≠ ABSENCE OF SELF-REPORT

Act II: Conscious access ... or postperceptual processing?

- → Relevance of 'No-Report' paradigms
- → But assuming that stimuli are consciously accessed
- → But residual uncontrolled post-processing?

Act III: GNW activated during 'No Report No explicit task' condition

Sergent et al. Nat. Comm. 2021 see also: Cohen, ... Pitts Cer. Cortex 2024

Act III: GNW activated during 'No Report No explicit task' condition except for response preparation & execution network (bhy report)

Sergent et al. Nat. Comm. 2021 see also: Cohen, ... Pitts Cer. Cortex 2024

Question: Should we discard P3b as ERP signature of conscious access?

⇒ Not a systematic signature of consc. access

BUT ...

Conscious access <u>is not a passive broadcasting</u> within GNW, but rather an active dynamic process the result of which may vary according to the current conscious posture (**EGNW** configuration)

Question: Should we discard P3b as ERP signature of conscious access?

⇒ Not a systematic signature of consc. access

BUT ...

Beware the 'hunt for post-perceptual processing': idealized vision of conscious access as a purely passive access to a still representation uncontaminated by 'post-perceptual processing'.

Example: from 'No report' to 'No cognition' paradigms (Block, 2019)

Question: Should we discard P3b as ERP signature of conscious access?

⇒ Not a systematic signature of consc. access

BUT ...

Beware the 'hunt for post-perceptual processing': idealized vision of conscious access as a purely passive access to a still representation uncontaminated by 'post-perceptual processing'.

Example: from 'No report' to 'No cognition' paradigms (Block, 2019)

risk of throwing out the baby (conscious experience) with the bathwater (post-perceptual processing).

Conscious access IS "post-perceptual"

- ⇒ second stage of processing
- ⇒ active interpretative process
- ⇒dynamic process : 'perceptual palimpsest' (not a still state)
- ⇒ strong influences of the current conscious posture on unconscious representations to be accessed (or not)

Importance of conscious influences on unconscious cognitive processing:

Importance of conscious influences on unconscious cognitive processing:

→ Revision of ucs 'automaticity'

Dehaene & Naccache, Cognition 2001

Naccache et al., Psychological Science 2002

Rohaut, ... & Naccache, Neurosc. Consc. 2016

Question: Should we discard P3b as ERP signature of conscious access?

- ⇒ Not a systematic signature of consc. access
- ⇒Late GNW negativity as 'primary report' ERP signature (≡neural access to GNW without explicit self-report)?
- ⇒ P3b as a 'meta-report' C.A. (≡neural access to GNW in an explicit self-report posture)?

Clarifying a GNW ambiguity:

- ⇒ Self-Reported vs Self-Reportable stimulus
- ⇒ 'Primary-report' = GNW access without explicit selfreporting posture
- ⇒ .Clearly different from unconscious processing (no GNW access and no self-reportability)
- ⇒ .Revisiting the overflow argument with no risk of 'panpsychism'/'pan-conscioucism'
- ⇒ 'Meta-report'= GNW access under explicit selfreporting posture (not necessarily preceded by a primary report)
- ⇒ H.O.T. as Meta-reports subset of GNW contents

Illustrating the active nature of conscious access by its absence: the case of hypnotic deafness

In the absence of hypnotic deafness

During hypnotic deafness

In the absence of hypnotic deafness

Munoz-Musat, ... & Naccache, Front. Neurosc. 2022
Breton, Munoz-Musat, ... & Naccache, in preparation (listen to Manon Breton's talk ©)

Importance of conscious influences on unconscious cognitive processing

A new look at 'Functional Neurological Disorders' (F.N.D.): involuntary symptoms triggered by a voluntary conscious posture

Naccache, *Le Nouvel inconscient* (Odile Jacob) 2006 Naccache & Munoz-Musat, Dialogues in Clin. Neurosc. 2024

Global Neuronal Workspace

- Synthetic résumé of GNW framework
- Questions/Ideas about conscious access
- Questions /Ideas about conscious state with a strong focus on disorders of consciousness

→ Consciousness would require complex and differentiated processing with long-distance functional connectivity within a GNW

By the way: GNW is not limited to PFC but includes Fronto-Parietal cortices!

→ Consciousness would require complex and differentiated processing with long-distance functional connectivity within a GNW

→ Loss of Consciousness maps with GNW lesions and/or dysfunction

Salek-Haddadi, A. et al. (2003)

→ Testing GNW predictions in neurological Disorders of Consciousness (DoC)

Probing conscious state and conscious access in DoC patients and testing GNWT predictions:

With a behavioral approach (no functional brain-imaging):

Comatose Deep sleep Gen. Anesth.

State (MCS)

Plum & Posner, 1972 Giacino et al., Neurology,2002 Laureys, Owen, Schiff, Lancet Neurol 2004

'Gold-standard' of MCS diagnosis: the CRS-R

AUDITORY FUNCTION SCALE
4 - Consistent Movement to Command *
3 - Reproducible Movement to Command *
2 - Localization to Sound
1 - Auditory Startle
0 - None
VISUAL FUNCTION SCALE
5 - Object Recognition *
4 - Object Localization: Reaching *
3 - Visual Pursuit *
2 - Fixation *
1 - Visual Startle
0 - None
MOTOR FUNCTION SCALE
6 - Functional Object Use *
5 - Automatic Motor Response *
4 - Object Manipulation *
3 - Localization to Noxious Stimulation *
2 - Flexion Withdrawal
1 - Abnormal Posturing
0 - None/Flaccid

OROMOTOR/VERBAL FUNCTION SCAL	E
3 - Intelligible Verbalization *	
2 - Vocalization/Oral Movement	
1 - Oral Reflexive Movement	
0 - None	
COMMUNICATION SCALE	
2 - Functional: Accurate	
1 - Non-Functional Intentional	
0 - None	
AROUSAL SCALE	
3 - Attention	
2 - Eye Opening w/o Stimulation	
1 - Eye Opening with Stimulation	
0 - Unarousable	

"cognitively mediated behavior occurs inconsistently, but is reproducible or sustained long enough to be differentiated from reflexive behavior"

Typical clinical trajectories after a severe brain injury:

Question: But what does it mean to be in a MCS?

- ⇒word 'conscious' in 'minimally conscious'
- ⇒ what is 'minimal' ? (minimal(e) in French)
- ⇒ e.g.: visual pursuit is not self-report
- ⇒ bhv communication of self-reports : no MCS anymore but EMCS (=conscious)
- ⇒ What does mean MCS ?

	Item	Cortically Mediated Behavior?
AUDITORY FUNCTION		,
4	Consistent movement to command	YES
3	Reproducible movement to command	YES
2	Localization to sound	NO
1	Auditory startle	NO
0	None	x
VISUAL FUNCTION		
5	Object recognition	YES
4	Object localization: reaching	YES
3	Visual pursuit	YES
2	Fixation	DEBATED
1	Visual startle (blink to threat)	NO
0	None	X
MOTOR FUNCTION		
6	Functional object use	YES
5	Automatic motor response	YES
4	Object manipulation	YES
3	Localization to noxious stimulation	YES
2	Flexion withdrawal	NO
1	Abnormal posturing	NO
0	None/Flaccid	X
OROMOTOR FUNCTION		
3	Intelligible verbalization	YES
2	Vocalization/Oral movement	DUBIOUS
1	Oral reflexive movement	NO
0	None	X
COMUNICATION		
2	Functional: accurate	YES
1	Non functional: intentional	YES
0	None	X
AROUSAL		
3	Attention	DUBIOUS
2	Eye opening without stimulation	NO
1	Eye opening with stimulation	NO
0	Unarousable	X

	Item	Cortically Mediated Behavior?
AUDITORY FUNCTION	item	Cortically Mediated Deliavior:
4	Consistent movement to command	YES
3	Reproducible movement to command	YES
2	Localization to sound	NO.
1	Auditory startle	NO
0	None	X
		Α
VISUAL FUNCTION		
5	Object recognition	YES
4	Object localization: reaching	YES
3	Visual pursuit	YES
2	Fixation	DEBATED
1	Visual startle (blink to threat)	NO
0	None	X
MOTOR FUNCTION		
6	Functional object use	YES
5	Automatic motor response	YES
4	Object manipulation	YES
3	Localization to noxious stimulation	YES
2	Flexion withdrawal	NO
1	Abnormal posturing	NO
0	None/Flaccid	X
OROMOTOR FUNCTION		
3	Intelligible verbalization	YES
2	Vocalization/Oral movement	DUBIOUS
1	Oral reflexive movement	NO
0	None	X
_		
COMUNICATION		
2	Functional: accurate	YES
1	Non functional: intentional	YES
0	None	x
AROUSAL		
3	Attention	DUBIOUS
2	Eye opening without stimulation	NO
1	Eye opening with stimulation	NO
0	Unarousable	х

Cortical networks

Brainstem: Superior olivary complex Brainstem: cochlear nucleus/LLN/caudal pontine reticular nucleus (PnC)

GREEN = MCS items

RED = VS/UWS items

ORANGE = DUBIOUS/LOOSE items

YELLOW = CONSCIOUS items (EMCS)

	Item	Cortically Mediated Behavior?	_	Cortical networks
AUDITORY FUNCTION		•		not a line of the second
4	Consistent movement to command	YES		Brainstem: Superior olivary complex Brainstem: cochlear nucleus/LLN/caudal pontine reticular
3	Reproducible movement to command	YES		Brainstem: cochlear nucleus/LLN/caudal pontine reticular
2	Localization to sound	NO		nucleus (PnC)
1	Auditory startle	NO		
0	None	x		
VISUAL FUNCTION			W.	Cortical network: occipito-parietal-FEF
5	Object recognition	YES		
4	Object localization: reaching	YES		Occipital cortex?
3	Visual pursuit	YES		occipital cortex:
2	Fixation	DEBATED		Brainstem: tectobulbar fibers / rostral colliculi of the
1	Visual startle (blink to threat)	NO		midbrain
0	None	X		
MOTOR FUNCTION				
6	Functional object use	YES	×	Cortex
5	Automatic motor response	YES		
4	Object manipulation	YES		Spinal cord reflex & sometimes higher
3	Localization to noxious stimulation	YES		opinal col a l'ellex a sometimes inglier
2	Flexion withdrawal	NO		
1	Abnormal posturing	NO .		Subcortical responses (Jackson): decortication /
0	None/Flaccid	X		decerebration
				Cortex : language networks
OROMOTOR FUNCTION				
3	Intelligible verbalization	YES		Loose criterion: from subcortical to cortical involvement
2	Vo calization/Oral movement	DUBIOUS		(phonological networks)
1	Oral reflexive movement	NO		
0	None	X		Brainstem
COMUNICATION				
2	Functional: accurate	YES		Cortex
1	Non functional: intentional	YES		COLICK
0	None	X		
AROUSAL			———	Loose criterion: mostly cortex but?
3	Attention	DUBIOUS		Brainstem Reticular Formation(ARAS)
2	Eye opening without stimulation	NO NO		
	Eye opening with stimulation	NO V		Brainstem Reticular Formation (ARAS)
0	Unarousable	X		Nanada Duniu 0040
				Naccache, Brain 2018

So, stating that a patient is in a MCS means, - with 100% certitude -, that some his/her overt behaviors are cortically-driven.

- → CRS-R criteria used to define MCS actually define a Cortically Mediated State (CMS)
- → MCS/CMS conveys very important information for CS recovery but does not necessarily mean conscious

→ Imaging specific CMS networks with resting state PET

→ Imaging specific CMS networks with resting state PET

→ Imaging specific CMS networks with resting state PET

- → GNW in Auditory MCS/CMS (response to command)
- → "Closer" to a conscious state?

Hermann,... et Naccache, Neurosc. of Consciousness 2022

So, stating that a patient is in a MCS means, - with 100% certitude -, that some his/her overt behaviors are cortically-driven.

- → CRS-R criteria used to define MCS actually define a Cortically Mediated State (CMS)
- → MCS/CMS conveys very important information for CS recovery but does not necessarily mean conscious
- → Necessity to enrich behavioral observation and to go beyond behavior to probe covert conscious states

Probing conscious state beyond behavior

Long-distance functional connectivity correlates with conscious states

Cortical activity is complex during conscious states

« The repertoire of possible contents of consciousness is thus characterized by an enormous combinatorial diversity: each workspace state is `highly differentiated' and of `high complexity', in the terminology of Tononi and Edelman (1998). » (Dehaene & Naccache, 2001)

Cortical activity is complex during conscious states

→ Automatic processing of neural signatures of conscious states : EEG

→ Toward a generalized & accessible diagnostic tool (EEG)

Engemann, Raimondo et al., Brain 2018

Probing conscious access beyond behavior Local Global auditory paradigm

« Local » effect captures the correlates of local regularity violations (MMN) and does not require awareness of the global regularity

Bekinschtein,... & Naccache, PNAS 2009 El Karoui,... & Naccache, Cer. Cortex 2014

Disentangling UCS from CS processing

In HV, global effect is observed only in subjects aware of global regularity

Bekinschtein,... & Naccache, PNAS 2009 El Karoui,... & Naccache, Cer. Cortex 2014

In DoC patients is a very specific sign of overt CS recovery (covert CS during testing?)

The global effect is specific of conscious states ... but is a loosely sensitive marker.

Patients with a GE are behaviorally conscious at 6 months with a PPV=80% in survivors (N=237)

Faugeras,... & Naccache, Neurology 2011
Faugeras,... & Naccache, Neuropsychologia 2012
Sitt,... & Naccache, Brain 2014
Perez,... & Naccache, Front. Neurol. 2021

« Local Global » for your eyes only!

Pupil dilation as a correlate of conscious access

Probing 'response to command' in brain activity

Multimodal exploration of each patient

.Structural brain-imaging

Sangaré,... & Naccache, Brain Sci. 2020

Use of brain diffusion tensor imaging for the prediction of long-term neurological outcomes in patients after cardiac arrest: a multicentre, international, prospective, observational, cohort study

Multimodal exploration of each patient

GNW Structural (DTI) & Functional (EEG) connectivities are correlated

DTI MRI Fractional Anisotropy

Altmayer et al., Brain Struct. Funct. 2024

Multimodal exploration of each patient

Stender et al., Curr. Biol. 2016 Hermann, ... & Naccache, Neuroimage Clinical 2021 Hermann,... et Naccache, Neurosc. of Consciousness 2022

Identifying new behavioral signs of CS

INEXTINGUISHABLE STARTLE REFLEX

download movies from

https://academic.oup.com/brain/article/143/7/2154/5862031#supplementary-data

Identifying new behavioral signs of CS

EXTINGUISHABLE STARTLE REFLEX

download movies from

https://academic.oup.com/brain/article/143/7/2154/5862031#supplementary-data

Habituation of auditory startle is a new powerful and behavioral sign of CMS easy to assess at bedside

	Pr (%)	AUC [95% CI]
Habituation of a	udito	ry startle reflex
Exhaustible	55	0.70 [0.60-0.79]
Auditory		902070000000000000000000000000000000000
Reproducible (3)	9	0.59 [0.54-0.66]
Systematic (4)	5	0.55 [0.51-0.6]
Visual		ANCIES ANTONIO PER LIST
Fixation (2)	6	0.56 [0.52-0.61]
Pursuit (3)	25	0.75 [0.68-0.82]
Localization (4)	2	0.52 [0.5-0.55]
Recognition (5)	5	0.55 [0.51-0.59]
Motor subscale		MATTER PRO
Localization (3)	7	0.57 [0.53-0.62]
Manipulation (4)	2	0.52 [0.5-0.55]
Automatic (5)	16	0.66 [0.59-0.72]
Oromotor and	verbal	subscale
Verbalization (3)	1	0.51 [0.5-0.53]
Communication	subs	cale
Intentional (1)	8	0.58 [0.53-0.64]

Hermann, ... Naccache, Brain 2020

Identifying new behavioral signs of CS

https://doi.org/10.1093/braincomms/fcae311

BRAIN COMMUNICATIONS 2024: fcae311

30

BRAIN COMMUNICATIONS

Pain anticipation is a new behavioural sign of minimally conscious state

@Aude Sangare, 1,2 Esteban Munoz-Musat, Amina Ben Salah, Melanie Valente, 1,2 Clemence Marois, Sophie Demeret, Blacobo Diego Sitt, Benjamin Rohaut 1,3 and Lionel Naccache 1,2

Illustration of the multimodal approach: a patient with severe TBI at 7 months

EXAMENS CLINIQUES

Examen clinique

CRS-R (Giacino JT, et al. Neurology 2002)

CRS-R du 14/12/2020 ; 12 [2-4-2-2-0-2]

CRS-R du 14/12/2020 : 13 [3*-4-2-2-0-2] en présence de son frère, si consignes faisant appel

à compréhension situationnelle et non verbales

CRS-R du 15/12/2020 : 13 [3-4-2-2-0-2]

CRS-R du 16/12/2020 : 13 [3-4-2-2-0-2]

CRS-R du 17/12/2020 : 13 [3-4-2-2-0-2]

CRS-R du 18/12/2020 : 13 [3-4-2-2-0-2]

Auditory Startle: Extinguishible

Habituation of auditory startle reflex is a new sign of minimally conscious state

- @Bertrand Hermann, 1,2,3 Amina Ben Salah, 1 Vincent Perlbarg, 4,3 Mélanie Valente, 1,6
- ®Nadya Pyatigorskaya, 1,3,7 Marie-Odile Habert, 4,8 Federico Raimondo, 1,9,10 Johan Stender, 1 Damien Galanaud, 1,3,7 Aurélie Kas, 4,8 Louis Puybasset, 3,4,11 Pauline Perez, 1 Jacobo D. Sitt, 1 Benjamin Rohaut 1,2,3,12 and ©Lionel Naccache 1,2,3,6,4

A patient with severe TBI at 7 months:

Motor Response with EEG: + (AUC=0,57)

A patient with severe TBI at 7 months:

Eye tracking of faces, text and relevant stimuli

→ Recovery of overt consciousness and of functional communication

Multimodality for DoC patients neuropronostication

Predicting 'Poor' vs 'Good' outcome

GOS 5-point scale	GOSE 8-point scale	Domain	Criteria	
Dead	1. Dead			
Vegetative State	2. Vegetative State	Consciousness		
Severe Disability (SD)	3. Lower SD	Function in home	Unable to look after themselves for 8 hours	
Conscious but dependent	4. Upper SD	Function in home Function outside the home	Unable to look after themselves for 24 hours OR Unable to shop OR Unable to travel	
Moderate Disability (MD) Independent but with limitations in one or more activities	5. Lower MD	Work/ study Social & leisure activities Family & friendships	Unable to work/ study OR Unable to participate OR Constant problems	
	6. Upper MD	Work Social & leisure activities Family & friendships	Reduced work capacity OR Participate much less OR Frequent problems	
Good Recovery (GR) Return to normal life	7. Lower GR	Social & leisure activities Family & friendships Symptoms	Participate a bit less OR Occasional problems OR Some symptoms affecting daily life	
	8. Upper GR		No problems	

Rohaut, Calligaris, ... Sitt & Naccache, Nature Medicine 2024

Multimodality improves neuropronostication

CRSr Coma Recovery Scale revised; (q)EEG (quantitative) Electroencephalography; ERP Event Related Potential; PA Fractional Anisotropy; FOUR. Full Outline of UnResponsiveness Score; RS-fHRI Resting state – functional Magnetic Resonance Imaging; PET Positron Emission Tomography; DoC Disorder of Consciousness; NASR habituation of Auditory Startle Reflex, CMD Cognitive Motor Dissociation.

Outcome prediction is possible

Outcome prediction precision increases with multimodality

Improving conscious states through DLPFC tDCS

Hermann,... & Naccache, Sci. Rep. 2020 Sangare, ... & Naccache, under revision

Improving conscious access with tDCS

Hermann,... Naccache, Sci. Reports 2020

Consciousness requires a complex and coherent long-distance connectivity

Loss of consciousness due to an excess of connectivity with a loss of complexity and differentiation

→ Complex partial & Absence epileptic seizures

Almost 20 years ago ... June 2006! Abbaye Saint Maximin

Esquisse pour une psychologie scientifique de la conscience : une approche neurologique.

Lionel Naccache

XIIIème Ecole d'été Jean Bancaud Conscience, Absences et Crises Provence, 11 au 14 Juin 2006

GNWT Prediction:

transition from partial simple seizure (CS) to complex seizure (LOC) should correspond to the <u>epileptic ignition of GNW</u>

Epileptic loss of consciousness is associated to a decrease of SEEG complexity within GNW areas

"The <u>loss of signal complexity was diffuse</u>, extending <u>bilaterally</u> and to the <u>associative</u> <u>cortices</u>, in patients <u>with profound alteration of awareness</u> and limited to the temporal mesial structures in patients with no alteration of awareness."

El Youssef, ... Naccache, Bénar & Bartolomei, Sci. Rep. 2023

→ Window of FC for a conscious GNW

Too low GNW FC => No global availability & low GNW complexity :VS/UWS

Optimal FC: functional GNW with differentiation of processors => conscious state

Too high GNW FC => low GNW complexity:
Epileptic LOC

- → Critical windows of FC & Complexity
- → Other CS states at the edge (FC/Complexity)? Psychedelics? Hypnosis? REM? LREM? ...

What is the minimal size of a GNW?

- . One hemisphere seems enough (split-brain patients)
- . Thalamo-cortical architecture required : the case of 'hemispherotomy'

Another demonstration of thalamus importance for conscious state through hemispherotomy model

Another demonstration of thalamus importance for conscious state through hemispherotomy model

Global Neuronal Workspace

- Synthetic résumé of GNW framework
- Questions/Ideas about conscious access
- Questions /Ideas about conscious state with a strong focus on disorders of consciousness
- Questions/Ideas about conscious stream

Conscious stream as an 'Inner Cinema' (not a dualistic Cartesian theater ©)

At any moment, a single complex representation occupies our GNW!

The mechanism of conscious access:

Top-down amplification and *all-or-none* ignition

"We have only one thought of the same thing at the same time" Descartes (Passions of the soul. 1649)

Dehaene & Naccache, Cognition 2001

→ CONSCIOUS STREAM AS A SUCCESSION OF DISCRETE CONTENTS SUBJECTIVELY EXPERIENCED AS A CONTINUUM

Naccache, Le Cinéma intérieur (2019) Naccache, Apologie de la discrétion (2022) IN CONCENTREDUT FRANCISCO

MELIES

IA MAGIE DU CINÉMA

FLAMMARION.

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 3693–3697, April 1996 Neurobiology

The wagon wheel illusion in movies and reality

(perception/vision/time/stroboscopic presentation/rotation)

Dale Purves*, Joseph A. Paydarfar, and Timothy J. Andrews

Department of Neurobiology, Duke University Medical Center, Durham, NC 27710

Contributed by Dale Purves, December 15, 1995

Akinetopsia reveals our 'Inner Cinema' by its perturbations

Brain (1983), 106, 313-340

SELECTIVE DISTURBANCE OF MOVEMENT VISION AFTER BILATERAL BRAIN DAMAGE

by J. ZIHL, D. VON CRAMON and N. MAI

(From the Max-Planck-Institut für Psychiatrie, Kraepelinstrasse 10, D-8000 München 40, FRG)

Temporal mosaic of conscious & unconscious states wakefulness?

during conscious wakefulness, a form of high-level filling-in process may join discrete conscious states separated by short periods of unconsciousness into what we subjectively experience as a continuous stream of consciousness.

Temporal mosaic of conscious & unconscious states during sleep?

® Nicolas Decat

A lexical decision task with a facial motor response code

Looking for the presence of conscious voluntary cognitive processes across all sleep stages

A typical trial with a response to stimuli

Discovering accurate responses in N1, N2, REM and lucid-REM sleep stages!

What is the 'neural fate' of responded stimuli as compared to unresponded ones?

- Same early cortical processing
- Bereitschaftspotential signatures for responded trials only

Discovering accurate responses in N1, N2, REM and lucid-REM sleep stages!

→ What is the (conscious) status of these responsive periods?

Probing current state immediately prior to stimulus onset : R vs NR

As compared to non responded trials, to be responded trials show:

- Low delta power
- High alpha, beta and gamma power
- High-complexity
- → Brief moments of conscious state?

Temporal mosaic of conscious & unconscious states wakefulness?

Mind the blank!

- No conscious access
- Large decrease of GNW FC
- Large decrease of complexity

→ Brief periods of unconscious state?

What's next?

Imagining original methods to access the granularity of individual conscious moments without averaging them together or assigning them to a set of predetermined categories.

→ Making the 'making-of' of our conscious stream accessible to our own GNWs

'Thanks!' to the icones of this 'Sperling array' ©

'Thanks!' to the icones of this 'Sperling array' ©

